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Dissipative Systems and Objective Description:
Quantum Brownian Motion as an Example

B. Vacchini1,2

Received

A structure of generator of a quantum dynamical semigroup for the dynamics of a test
particle interacting through collisions with the environment is considered, which has
been obtained from a microphysical model. The related master-equation is shown to go
over to a Fokker–Planck equation for the description of Brownian motion at quantum
level in the long wavelength limit. The structure of this Fokker–Planck equation is
expressed in this paper in terms of superoperators, giving explicit expressions for the
coefficient of diffusion in momentum in correspondence with two cases of interest for
the interaction potential. This Fokker–Planck equation gives an example of a physically
motivated generator of quantum dynamical semigroup, which serves as a starting point
for the theory of measurement continuous in time, allowing for the introduction of
trajectories in quantum mechanics. This theory has in fact already been applied to the
problem of Brownian motion referring to similar phenomenological structures obtained
only on the basis of mathematical requirements.

KEY WORDS: quantum theory; complete positivity; Fokker–Planck; quantum
Brownian motion; dynamic structure factor.

1. INTRODUCTION

Despite its age the issue about the relationship between quantum and classical
world, perhaps most deeply stressed at the very beginning of quantum mechanics by
Niels Bohr, cannot be considered settled and still gives rise to a lively debate, as con-
firmed for example by a book recently published on the subject (Joos et al., 2003),
tackling it from the point of view of decoherence. This very word has in fact recently
become very popular for the description of phenomena connected to the transition
from quantum to classical regime. While the interest in the phenomenon of deco-
herence was previously mainly connected to foundational issues, it is now mostly
related to applications in quantum computing. The extremely short-time scales
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associated to the phenomenon of decoherence, even in few-body systems, are in
fact one of the key problems to solve in order to leave the possibility open of realiz-
ing in the future practically useful quantum computers (Bouwmeester et al., 2000).

The term decoherence is used to denote the transition to dynamics other than
unitary even for few- or one-body systems, the effective nonunitary subdynamics
for these systems arising from the impossibility to completely isolate them from the
rest of the laboratory, at least on sufficiently long-time scales. As a result one can-
not expect that the physics of the microscopic system can be correctly described
by a unitary, reversible evolution driven by a suitable self-adjoint Hamiltonian.
Thus a simple picture in terms of a Schrödinger equation fails, the correspondence
principle is no longer useful in order to envisage the generator of the dynamics, and
one is compelled to resort to a more general formalism for the description of these
so-called open quantum systems (Breuer and Petruccione, 2002). In this connec-
tion the studies on the foundations of quantum mechanics, in particular on quantum
structures (Busch et al., 1997) and on quantum measurement theory (Busch et al.,
1991), have led to important results, indicating possible new sceneries for quantum
dynamics and especially putting into evidence mathematical structures and proper-
ties relevant for the quantum realm. More specifically a more modern formulation
of quantum mechanics has by now emerged (Holevo, 2001), where the notions
of effect (first introduced by Ludwig (1983, 1985)), coexistent observable, POV-
measure, operation, and instrument allow for a better formulation of irreversible
dynamics and measurement processes. On the basis of these concepts a formu-
lation of continuous measurement theory in quantum mechanics has been given,
mainly developed by Davies (1969, 1970, 1971), the Milan group (Barchielli,
1986; Barchielli et al., 1982, 1983; Barchielli and Lupieri, 1985; Lupieri, 1983)
and Holevo (1988, 1989) (for an extensive review see (Holevo, 2001)). This the-
ory relies on the introduction of the generator of a quantum dynamical semigroup
(Alicki, 2002; Alicki and Lendi, 1987; Gorini et al., 1978) for the dynamics of the
observed microscopic system, to which an operation-valued stochastic process can
be associated. It is then possible to introduce well-defined functional probability
densities in the space of time trajectories of certain observables of the system, thus
recovering, in this highly nontrivial way, elements of objective description, the
very notion of trajectory being a classical one (Lanz, 1994) for a compact review
on the subject and (Lanz et al., 2000a,b; 2002) for a related approach to the problem
of objectivity in quantum mechanics). The observables for which trajectories can
be introduced depend on the very structure of the quantum dynamical semigroup
giving the irreversible time evolution, the operators appearing in it and determin-
ing the irreversible part of the dynamics also indicating the possible measuring
decompositions of the mapping giving the time evolution.

The general structure of bounded generators of quantum dynamical semi-
groups, also satisfying the property of complete positivity (Kraus, 1983; Vacchini,
2000a), has been fully characterized by Lindblad (1976b), while in the unbounded
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case only a few results are available (Holevo, 1998). It is therefore of interest to ob-
tain physical examples of generators of quantum dynamical semigroups, especially
in the case in which the generator is unbounded. In the following we will recall a
result recently obtained in this framework for the description of the motion of a test
particle in a quantum fluid (Lanz and Vacchini, 1997a,b; O’connel, 2001; Vacchini,
2000b, 2001a,b,c), giving a new formulation in terms of superoperators and further
calculating the diffusion coefficient for interaction potentials of physical interest.
The considered generator of quantum dynamical semigroups, obtained through
a microphysical derivation based on a scattering theory approach, falls within a
class known as quantum Brownian motion (Lindblad, 1998). This class of models
has already been considered within the framework of continuous measurement
theory (Barchielli, 1983), leading to a description in terms of trajectories for the
expectation values of the operators position and momentum of the particle. The
starting point for Barchielli (1983) was the phenomenological structure of gener-
ator of quantum Brownian motion proposed by (Lindblad, 1976a; Sǎndulesw and
Scutaru, 1987) on the basis of his general result on completely positive quantum
dynamical semigroups and physical requirements on the dynamics originated from
a classical analogy. The result presented here gives a physically motivated particu-
lar expression for the coefficients, determined in terms of microphysical quantities,
and for the selection of contributions appearing in the structure of the generator.

2. MASTER EQUATION FOR A TEST PARTICLE IN A QUANTUM
GAS IN TERMS OF THE DYNAMIC STRUCTURE FACTOR

Let us consider the following problem of nonequilibrium statistical mechan-
ics: a test particle interacts through collisions with a fluid. This model is known
as Rayleigh gas (Spohn, 1980) and on a suitable time scale, much longer than the
typical relaxation time of the macroscopic fluid, one expects a Markovian dynam-
ics described in terms of a master-equation. In the quantum case an expression has
recently been proposed for the generator of such a dynamics, which is in particular
the generator of a completely positive quantum dynamical semigroup (Vacchini,
2001c). The master-equation takes the following form

d�̂

dt
= − i

h
[Ĥ0, �̂] + L[�̂], (2.1)

where �̂ is the statistical operator associated to the test particle of mass M , Ĥ0 the
free Hamiltonian p̂2/2M and the mapping giving the dissipative part of the time
evolution has the following Lindblad structure

L[·] = 2π

h
(2πh)3n

∫
R3

d3q |t̃(q)|2

×
[

Û (q)
√

S(q, p̂) ·
√

S(q, p̂)Û †(q) − 1

2
{S(q, p̂), ·}

]
. (2.2)
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The unitary operators Û (q) are given by e
i

h
q·x̂

, while the function t̃(q) is the Fourier
transform with respect to the transferred momentum q of the T-matrix describing
the collisions between test particle and fluid, supposed to depend only on the mod-
ulus of the momentum transfer and in a negligible way on energy. The function
S(q, p) appearing operator-valued in (2.2) is a positive two-point correlation func-
tion known in the physics community as dynamic structure factor (Griffin, 1993;
Lovesey, 1984), and it is usually expressed as a function of momentum and energy
transfer, q and E . It is defined by

S(q, E) ≡ S(q, p)

= 1

2πh

∫
R

dt
∫

R3
d3x e

i
h [E(q,p)t−q·x] 1

N

∫
R3

d3y 〈N (y)N (y + x, t)〉 , (2.3)

with

E(q, p) ≡ E = (p + q)2

2M
− p2

2M
= q2

2M
+ p · q

M

thus being the Fourier transform of the two-point time-dependent density cor-
relation function of the fluid, calculated with respect to the statistical operator
describing the fluid at equilibrium. The dynamic structure factor is always posi-
tive since it is proportional to the energy-dependent scattering cross-section of a
microscopic probe off a macroscopic sample (van Hove, 1954), and it gives the
spectrum of spontaneous fluctuations of the macroscopic sample.

In particular the dynamic structure factor can be exactly calculated in the
case of a free quantum gas, thus obtaining close expressions for Bose–Einstein
and Fermi–Dirac statistics, which both go over to Maxwell–Boltzmann statistics
in the limit of low density. Denoting by SBE(q, p) the dynamic structure factor for a
free gas of particles of mass m obeying Bose–Einstein statistics one has (Vacchni,
2001c)

SBE(q, p) = − 1

(2πh)3

2πm2

nβq

1

1 − exp
[

β

2m (2σ (q, p)q − q2)
] (2.4)

× log

[
1 −

{
1 − exp

[
β

2m
(2σ (q, p)q − q2)

]}

×
exp

[
− β

2m σ 2(q, p)
]

1 − z exp
[
− β

2m (σ (q, p) − q)2
]



with β = 1/kT the inverse of the temperature, n the particle density, z the fu-
gacity of the gas, which is a number positive and less than one for Bose–Einstein
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particles (Pathria, 1996), and

σ (q, p) = 1

2q
[q2 + 2m E(q, p)].

Similarly for Fermi–Dirac statistics

SFD(q, p) = + 1

(2πh)3

2πm2

nβq

1

1 − exp
[

β

2m (2σ (q, p)q − q2)
] (2.5)

× log

[
1 +

{
1 − exp

[
β

2m
(2σ (q, p)q − q2)

]}

exp
[
− β

2m σ 2(q, p)
]

1 + z exp
[
− β

2m (σ (q, p) − q)2
]

 ,

so that the difference only lies in a suitable change of signs and in the range of
the fugacity z which is positive without further restrictions for Fermi–Dirac parti-
cles (Pathria, 1996). Both (2.4) and (2.5) in the limit of low density, corresponding
to z much smaller than one, lead in a straightforward way to the expression for a
gas of Maxwell-Boltzmann particles, as can be seen expanding the logarithm:

SMB(q, p) = 1

(2πh)3

2πm2

nβq
z exp

[
− β

2m
σ 2(q, p)

]
, (2.6)

where the fugacity is now given by the explicit expression

z = n

(
2πh2β

m

)3/2

.

A case of particular interest in which to apply (2.1) is the description at
quantum level of Brownian motion, that is the case in which the mass M of the
test particle is much bigger than the mass m of the gas particles. One therefore
needs expressions for the dynamic structure factor in the Brownian limit in which
the ratio α = m/M is much smaller than one. To do this one writes the argument
of the exponentials in (2.4), (2.5), and (2.6) as a polynomial in α, keeping only the
contributions in the lowest order. Concentrating on the simplest case of a gas of
Maxwell–Boltzmann particles, writing σ 2 as a polynomial in α

σ 2(q, p) = q2

4
+ 1

2
α[q2 + 2p · q] + 1

4

α2

q2
[q2 + 2p · q]2,

and keeping terms up to first order one has

S∞
MB(q, p) = 1

(2πh)3

2πm2

nβq
z e− β

8m q2
e
− β

2

[
q2

2M + q·p
M

]
, (2.7)
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where the index ∞ denotes the Brownian limit α � 1. Equation (2.1) now becomes

d�̂

dt
= − i

h
[Ĥ0, �̂] + 2π

h
(2πh)3n

∫
R3

d3q |t̃(q)|2

×
[

Û (q)
√

S∞
MB(q, p̂)�̂

√
S∞

MB(q, p̂)Û †(q) − 1

2

{
S∞

MB(q, p̂), �̂
}]

(2.8)

and in view of (2.7), introducing the operators

V (q, p̂, x̂) = e
i
h q·x̂e− β

4M q·p̂

(2.8) takes the more manifest Lindblad structure

d�̂

dt
= − i

h
[Ĥ0, �̂] + z

4π2m2

βh

∫
R3

d3q
|t̃(q)|2

q
e− β

8m (1+2α)q2

×
[

V (q, p̂, x̂)�̂V †(q, p̂, x̂) − 1

2
{V †(q, p̂, x̂)V (q, p̂, x̂), �̂}

]

= − i

h
[Ĥ0, �̂] + z

4π2m2

βh

∫
R3

d3q
|t̃(q)|2

q
e− β

8m (1+2α)q2

×
[

e
i
h q·x̂ e− β

4M q·p̂�̂ e− β

4M q·p̂ e− i
h q·x̂ − 1

2

{
e− β

2M q·p̂, �̂
}]

. (2.9)

The action of the operators position and momentum of the microsystem x̂ and p̂ is
best seen introducing the following superoperators

L−
Â
[·] = i

h
[ Â, ·]− = i

h
[ Â, ·] (2.10)

L+
Â
[·] = 1

h
[ Â, ·]+ = 1

h
{ Â, ·},

which will also prove useful for future expansions. In terms of (2.10) Eq. (2.9)
takes the remarkably simple structure

d�̂

dt
= − i

h
[Ĥ0, �̂] + z

4π2m2

βh

∫
R3

d3q
|t̃(q)|2

q
e− β

8m (1+2α)q2
(2.11)

×
[

exp
(
L−

q·x̂
)

exp
(
L+

κq·p̂
)

[�̂] − 1

2

{
exp

(
2κ

h
q · p̂

)
, �̂

}]

with κ = − β h
4M . The master-equation (2.9) gives a physical realization of a general

structure of generators of translation-covariant quantum dynamical semigroups
recently introduced by Holevo (1993a,b, 1995, 1996). In fact (2.9) and more gen-
erally (2.1) are invariant under spatial translations in the sense that

L[Ua[ŵ]] = Ua[L[ŵ]], (2.12)
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with ŵ a statistical operator andUa[·] = e− i
h a·p̂ · e+ i

h a·p̂. In particular, provided the
macroscopic system is in a β-KMS state (Haag, 2001), thus implying the detailed
balance condition for the dynamic structure factor (Brenig, 1989), a stationary
solution of (2.1) is given by

ŵ0(p̂) = e−β
p̂2

2M . (2.13)

Further formal properties of (2.1) are discussed in (Vacchini, 2001c, 2002a).

3. FOKKER–PLANCK EQUATION FOR THE DESCRIPTION
OF QUANTUM DISSIPATION

Given the master-equation (2.11) one is naturally led to the question, whether
some small parameter having a definite physical meaning exists, allowing for a
Kramers-Moyal expansion leading from the master-equation to a Fokker–Planck
equation (van Kampen, 1981). This is in fact the case for the momentum transfer
q, small q corresponding through the physical meaning of the dynamic struc-
ture factor to the long wavelength part of the density fluctuations spectrum of
the macroscopic system with which the Brownian particle is interacting. In the
limit of small momentum transfer, keeping terms at most second order as typ-
ical in Fokker–Planck equations (Risken, 1989), the operator part of (2.11)
becomes[

exp
(
L−

q·x̂
)

exp
(
L+

κq·p̂
)

[�̂] − 1

2

{
exp

(
2κ

h
q · p̂

)
, �̂

} ]

≈ L−
q·x̂[�̂] + 1

2
L−2

q·x̂ [�̂] + L+
κq·p̂[�̂] + 1

2
L+2

κq·p̂[�̂] + L−
q·x̂L+

κq·p̂[�̂]

−L+
κq·p̂[�̂] − L+

κ2/ h(q·p̂)2
[�̂]

=
3∑

i=1

qiL−
x̂i

[�̂] + 1

2

3∑
i, j=1

qi q j
{
L−

x̂i
L−

x̂ j
[�̂] + L−

κp̂i
L−

κp̂ j
[�̂] + L−

x̂i
L+

2κp̂ j
[�̂]

}
.

Integrating over q only terms bilinear in the momentum transfer with i = j survive,
and exploiting further the isotropy of the gas implying q2

i = 1
3 q2 one obtains

d�̂

dt
= − i

h
[Ĥ0, �̂] + z

2

3

π2m2

βh

∫
R3

d3q |t̃(q)|2qe− β

8m (1+2α)q2
(3.1)

×
3∑

i=1

{
L−2

x̂i
[�̂] + L−2

κp̂i
[�̂] + L−

x̂i
L+

2κp̂i
[�̂]

}
.

We now want to evaluate the overall coefficient for some cases of physical
interest. Before this we note that the linear dependence on the fugacity z in (3.1)
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is a result typical of a gas of Maxwell-Boltzmann particles. Keeping effects due to
quantum statistics into account (Vacchini, 2001b) the factor z has to be replaced
by a function ζ (z) defined in the following way

ζ (z) =
{ z Maxwell − Boltzmann

z/(1 − z) Bose
z/(1 + z) Fermi

,

so that we will generally consider the coefficient

Dpp = ζ (z)
2

3

π2m2

βh

∫
R3

d3q |t̃(q)|2qe− β

8m q2
. (3.2)

We will give two examples. We consider first the case of a short-range potential
characterized by a strength v0 and a typical range r0, according to

t(x) = v0 e−|x|2/r2
0 . (3.3)

The Fourier transform of (3.3) is given by

t̃(q) =
∫

R3
d3x

e
i
h q·x

(2πh)3
t(x) = π3/2

(2πh)3
v0r3

0 e− q2r2
0

4 h2

and the coefficient (3.2) becomes accordingly

Dpp = ζ (z)
1

48
v2

0
m

h

v3

(1 + v)2

with v a characteristic constant given by the square ratio between potential range
and thermal wavelength λT =

√
2πβ h2/m of the particles of the gas

v = 8π
r2

0

λ2
T

. (3.4)

As a second example we consider the case in which the range of the potential
shrinks to zero, so that the collisions are described by an effective T-matrix of the
form

t(x) = 2πh2

M
a0δ

3(x), (3.5)

where a0 is a characteristic scattering length. The Fourier transform of (3.5) is

t̃(q) = 1

4π2

a0

hM

and as a consequence

Dpp = ζ (z)
32

3

m

hβ2
α2 a2

0

λ2
T

.
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As it can be seen, given some exact expression or some phenomenological Ansatz
for the T-matrix describing the collisions, one obtains a definite expression for the
coefficient Dpp, which as we shall see is connected to diffusion in momentum,
depending on the physical parameters of interest.

To make the comparison with the literature easier Eq. (3.1) using (2.10) can
be also written

d�̂

dt
=− i

h
[Ĥ0, �̂]

− Dpp

3∑
i=1

{
1

h2 [x̂i , [x̂i , �̂]]+ κ2

h2 [p̂i , [p̂i , �̂]]− i

h2 2κ[x̂i , {p̂i , �̂}]
}

. (3.6)

The Fokker–Planck equation (3.6) gives an example of unbounded generator of
a completely positive quantum dynamical semigroup and corresponds to a par-
ticular physical realization of the diffusive continuous component of the general
structure of translation-covariant quantum dynamical semigroup characterized by
Holevo (1993a,b, 1995, 1996). In fact (3.6) is invariant under translations accord-
ing to (2.12), moreover an operator of the form (2.13) is still a stationary solution
due to the particular ratio between the friction coefficient and the coefficient of
diffusion in momentum (Kohen et al., 1997), as discussed in the following. To
draw a connection with the classical description of Brownian motion the last three
terms of (3.6) can be recognized as being due to diffusion in momentum, position,
and friction, respectively (Vacchini, 2001b). In fact exploiting the correspondence
principle the commutator with the position operator corresponds to a derivative
with respect to momentum, the commutator with the momentum operator corre-
sponds to a derivative with respect to position and the anticommutator with the
momentum operator corresponds to a linear multiplication by momentum with a
factor 2, as can also be most directly seen in terms of the Wigner function (Isar,
1999; Lanz and Vacchini, 2002; Vacchini, 2002b). In particular the ratio between
the coefficient responsible for diffusion in momentum and the coefficient responsi-
ble for friction is given by M /β as in the classical Kramers’ equation for Brownian
motion in phase space (van Kampen, 1981; Kramers, 1940), thus granting the
expected stationary solution (2.13).

Equation (3.6) is a particular realization, obtained on the basis of a microphys-
ical model, of the general phenomenological expression for quantum Brownian
motion considered in (Barchielli, 1983) as a starting point for the application of the
theory of measurement continuous in time. It does provide a physically motivated
structure of generator of quantum dynamical semigroup allowing for the intro-
duction of an objective description in terms of trajectories in the sense clarified
in Lanz (1994).
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